33,07 €
44,09 €
-25% su kodu: ENG25
From Divergent Power Series to Analytic Functions
From Divergent Power Series to Analytic Functions
33,07
44,09 €
  • Išsiųsime per 10–14 d.d.
Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to…
  • Leidėjas:
  • Metai: 1994
  • ISBN-10: 3540582681
  • ISBN-13: 9783540582687
  • Formatas: 15.3 x 23.2 x 1.1 cm, minkšti viršeliai
  • Kalba: Anglų
  • Extra -25 % nuolaida šiai knygai su kodu: ENG25

From Divergent Power Series to Analytic Functions (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(2.50 Goodreads įvertinimas)

Aprašymas

Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.

EXTRA 25 % nuolaida su kodu: ENG25

33,07
44,09 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 1d.08:33:40

Nuolaidos kodas galioja perkant nuo 5 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 0,44 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau
  • Autorius: Werner Balser
  • Leidėjas:
  • Metai: 1994
  • ISBN-10: 3540582681
  • ISBN-13: 9783540582687
  • Formatas: 15.3 x 23.2 x 1.1 cm, minkšti viršeliai
  • Kalba: Anglų

Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"174","probability":1,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738c2a550eb1769180202.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"173","probability":1.3,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738c13edaf41769180179.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"172","probability":1.6,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738c00656611769180160.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"171","probability":1.5,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6979c7e026ae11769588704.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"170","probability":1.5,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738bd43f5c21769180116.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"169","probability":1.6,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738b882df611769180040.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"167","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738b6e6274b1769180014.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"166","probability":0.1,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738b36427321769179958.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]